Preliminary Specification, V 1.1, October 2004

TDA 5220

ASK/FSK Single Conversion Receiver
Version 1.1

Wireless Control
 Components

Edition 2004-10-20

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany
(C) Infineon Technologies AG 2004.

All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or the Infineon Technologies Companies and our Infineon Technologies Representatives worldwide (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Preliminary Specification, V 1.1, October 2004

TDA 5220

ASK/FSK Single Conversion Receiver Version 1.1

Wireless Control
 Components

| Revision History: \quad 2004-10-20 | V 1.1 | |
| :--- | :--- | :--- | :--- |
| Previous Version: \quad none | | |
| Page | Subjects (major changes since last revision) | |
| | | |
| | | |
| | | |
| | | |

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: petra.haidn@infineon.com

Page

Table of Contents
6
1 Product Description
6
1.1 Overview
6
1.2 Features
6
1.3 Application
7
2 Functional Description 7
2.1 Pin Configuration 7
2.2 Pin Definition and Functions 8
2.3 Functional Block Diagram 15
2.4 Functional Block Description 15
2.4.1 Low Noise Amplifier (LNA) 15
2.4.2 Mixer 16
2.4.3 PLL Synthesizer 16
2.4.4 Crystal Oscillator 16
2.4.5 Limiter 16
2.4.6 FSK Demodulator 17
2.4.7 Data Filter 17
2.4.8 Data Slicer 18
2.4.9 Peak Detector 18
2.4.10 Bandgap Reference Circuitry 18
3 Applications 19
3.1 Application Circuit 19
3.2 Data Filter Design 21
3.3 Crystal Load Capacitance Calculation 22
3.4 Crystal Frequency Calculation 22
3.5 Data Slicer Threshold Generation 24
3.6 ASK/FSK-Data Path Functional Description 25
3.7 FSK Mode 26
3.8 ASK Mode 28
$3.9 \quad$ Principle of the Precharge Circuit 28
4 Reference 32
4.1 Electrical Data 32
4.1.1 Absolute Maximum Ratings 32
4.1.2 Operating Range 32
4.1.3 $\quad \mathrm{AC} / \mathrm{DC}$ Characteristics at $T_{\mathrm{AMB}}=25^{\circ} \mathrm{C}$ 33
4.1.4 $\quad A C / D C$ Characteristics at $\mathrm{T}_{\mathrm{AMB}}=-40$ to $105^{\circ} \mathrm{C}$ 40
4.2 Test Circuit 43
4.3 Test Board Layouts 44
4.4 Bill of Materials 46
5 Package Outlines 48

TDA 5220

Product Description

1 Product Description

1.1 Overview

The IC is a very low power consumption single chip FSK/ASK Superheterodyne Receiver (SHR) for the frequency bands 810 to 870 MHz and 400 to 440 MHz . The IC offers a high level of integration and needs only a few external components. The device contains a low noise amplifier (LNA), a double balanced mixer, a fully integrated VCO, a PLL synthesiser, a crystal oscillator, a limiter with RSSI generator, a PLL FSK demodulator, a data filter, an advanced data comparator (slicer) with selection between two threshold modes and a peak detector. Additionally there is a power down feature to save current and extend battery life, and two selectable alternatives of generating the data slicer threshold.

$1.2 \quad$ Features

- Low supply current ($\mathrm{Is}=5.7 / 5.9 \mathrm{~mA}$ typ. in FSK mode, $\mathrm{Is}=5.0 / 5.2 \mathrm{~mA}$ typ. in ASK mode for $434 / 868 \mathrm{MHz}$)
- Supply voltage range $5 \mathrm{~V} \pm 10 \%$
- Power down mode with very low supply current (50nA typ.)
- FSK and ASK demodulation capability
- Fully integrated VCO and PLL Synthesiser
- ASK sensitivity better than -106 dBm over specified temperature range (- 40 to $+105^{\circ} \mathrm{C}$)
- FSK sensitivity better than -100 dBm over specified temperature range (- 40 to $+105^{\circ} \mathrm{C}$)
- Selectable frequency ranges $810-870 \mathrm{MHz}$ and $400-440 \mathrm{MHz}$
- Limiter with RSSI generation, operating at 10.7 MHz
- 2nd order low pass data filter with external capacitors
- Data slicer with selection between two threshold modes (see Section 2.4.8)

1.3 Application

- Keyless Entry Systems
- Remote Control Systems
- Alarm Systems
- Low Bitrate Communication Systems

TDA 5220

Functional Description

2 Functional Description

2.1 Pin Configuration

Figure 1 Pin Configuration

TDA 5220

Functional Description

2.2 Pin Definition and Functions

Table 1 Pin Defintion and Function

Pin No.	Symbol	Equivalent I/O Schematic	Function	
1	CRST1		External Crystal Connector 1	
2	VCC			
3				

TDA 5220

Functional Description

Pin No.	Symbol	Equivalent I/O Schematic	Function	
4	TAGC			AGC Time Constant Control
5	AGND			
6	LNO			

TDA 5220

Functional Description

Pin No.	Symbol	Equivalent I/O Schematic	Function
8	MI MIX		Mixer Input Complementary Mixer Input
10	AGND		Analogue Ground Return
11	FSEL		$868 / 434 \mathrm{MHz}$ Operating Frequency Selector
12	IFO		10.7 MHz IF Mixer Output
13	DGND		Digital Ground Return

TDA 5220

Functional Description

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Equivalent I/O Schematic	Function
14	VDD		5 V Supply (PLL Counter Circuity)
15	MSEL		ASK/FSK Modulation Format Sector
16	SSEL		Data Slicer Reference Level Sector
17	LIM		Limiter Input
18	LIMX		Complementary Limiter Input

TDA 5220

Functional Description

$\overline{P i n}$ No.	Symbol	Equivalent I/O Schematic	Function
19	SLP		Data Slicer Positive Input
20	SLN		Data Slicer Negative Input
21	OPP		OpAmp Noninverting Input
22	FFB		Data Filter Feedback Pin

TDA 5220

Functional Description

| Pin
 No. | Symbol | Equivalent I/O Schematic | Function |
| :--- | :--- | :--- | :--- | :--- |
| 23 | THRES | | AGC Threshold |
| Input | | | |

TDA 5220

Functional Description

Pin No.	Symbol	Equivalent I/O Schematic	Function	
27	PDWN			Power Down Input
28	CRST2			

2.3 Functional Block Diagram

Figure 2 Block Diagram

2.4 Functional Block Description

2.4.1 Low Noise Amplifier (LNA)

The LNA is an on-chip cascode amplifier with a voltage gain of 15 to 20 dB . The gain figure is determined by the external matching networks situated ahead of LNA and between the LNA output LNO (Pin 6) and the Mixer Inputs MI and MIX (Pins 8 and 9). The noise figure of the LNA is approximately 3 dB , the current consumption is $500 \mu \mathrm{~A}$. The gain can be reduced by approximately 18 dB . The switching point of this AGC action can be determined externally by applying a threshold voltage at the THRES pin (Pin 23). This voltage is compared internally with the received signal (RSSI) level generated by the limiter circuitry. In case that the RSSI level is higher than the threshold voltage the LNA gain is reduced and vice versa. The threshold voltage can be generated by attaching a voltage divider between the 3VOUT pin (Pin 24) which provides a temperature stable 3V output generated from the internal bandgap voltage and the THRES pin as described in Section 3.1. The time constant of the AGC action can be determined by connecting a capacitor to the TAGC pin (Pin 4) and should be chosen along with the appropriate threshold voltage according to the intended operating case and interference scenario to be expected during operation. The optimum choice of AGC time constant and the threshold voltage is described in Section 3.1.

Functional Description

2.4.2 Mixer

The Double Balanced Mixer downconverts the input frequency (RF) in the range of 400$440 \mathrm{MHz} / 810-870 \mathrm{MHz}$ to the intermediate frequency (IF) at 10.7 MHz with a vol-tage gain of approximately 21 dB by utilising either high- or low-side injection of the local oscillator signal. In case the mixer is interfaced only single-ended, the unused mixer input has to be tied to ground via a capacitor. The mixer is followed by a low pass filter with a corner frequency of 20 MHz in order to suppress RF signals to appear at the IF output (IFO pin). The IF output is internally consisting of an emitter follower that has a source impedance of approximately 330Ω to facilitate interfacing the pin directly to a standard 10.7 MHz ceramic filter without additional matching circuitry.

2.4.3 PLL Synthesizer

The Phase Locked Loop synthesizer consists of a VCO, an asynchronous divider chain, a phase detector with charge pump and a loop filter and is fully implemented on-chip. The VCO is including spiral inductors and varactor diodes. The tuning range of the VCO guarantee over production spread and the specified temperature range is 820 and 860 MHz . The oscillator signal is fed both to the synthesiser divider chain and to the downconverting mixer. In case of operation in the 400 to 440 MHz range the signal is divided by two before it is fed to the Mixer. Depending on whether high- or low-side injection of the local oscillator is used, the receiving frequency ranges are 810 to 840 MHz and 840 to 870 MHz or 400 to 420 MHz and 420 to 440 MHz - see also Section 3.4. To be able to switch between two different frequency channels a divider ratio of either 32 or 32.25 can be selected via the FSEL-Pin.

Table 2 FSEL-Pin Operating States

FSEL	RF
Open	$400-440 \mathrm{MHz}$
GND	$810-870 \mathrm{MHz}$

2.4.4 Crystal Oscillator

The calculation of the value of the necessary crystal load capacitance is shown in Section 3.3, the crystal frequency calculation is explained in Section 3.4.

2.4.5 Limiter

The Limiter is an AC coupled multistage amplifier with a cumulative gain of approximately 80 dB that has a bandpass-characteristic centred around 10.7 MHz . It has a typical input impedance of 330Ω to allow for easy interfacing to a 10.7 MHz ceramic IF filter. The limiter circuit also acts as a Receive Signal Strength Indicator (RSSI) generator which produces a DC voltage that is directly proportional to the input

Functional Description

signal level as can be seen in Figure 4. This signal is used to demodulate ASKmodulated receive signals in the subsequent baseband circuitry. The RSSI output is applied to the modulation format switch, to the Peak Detector input and to the AGC circuitry.
In order to demodulate ASK signals the MSEL pin has to be in its 'High'-state as described in the next chapter.

2.4.6 FSK Demodulator

To demodulate frequency shift keyed (FSK) signals a PLL circuit is used that is contained fully on chip. The Limiter output differential signal is fed to the linear phase detector as is the output of the 10.7 MHz center frequency VCO. The demodulator gain is typically $200 \mu \mathrm{~V} / \mathrm{kHz}$. The passive loop filter output that is comprised fully on chip is fed to both the VCO and the modulation format switch described in more detail below. This signal is representing the demodulated signal with low frequencies applied to the demodulator demodulated to logic zero and high frequencies demodulated to logic ones. However this is only valid in case the local oscillator is low-side injected to the mixer which is applicable to receive frequencies above 840 or 420 MHz . In case of receive frequencies below 840 or 420 MHz high frequencies are demodulated as logical zeroes due to a sign inversion in the downconversion mixing process as the L0 is high-side injected to the mixer. See also Section 3.4.

The modulation format switch is actually a switchable amplifier with an AC gain of 11 that is controlled by the MSEL pin (Pin 15) as shown in the following table. This gain was chosen to facilitate detection in the subsequent circuits. The DC gain is 1 in order not to saturate the subsequent Data Filter wih the DC offset produced by the demodulator in case of large frequency offsets of the IF signal. The resulting frequency characteristic and details on the principle of operation of the switch are described in Section 3.6.

Table 3 MSEL Pin Operating States

MSEL	Modulation Format
Open	ASK
Shorted to ground	FSK

The demodulator circuit is switched off in case of reception of ASK signals.

2.4.7 Data Filter

The data filter comprises an OP-Amp with a bandwidth of 100 kHz used as a voltage follower and two $100 \mathrm{k} \Omega$ on-chip resistors. Along with two external capacitors a 2nd order

Functional Description

Sallen-Key low pass filter is formed. The selection of the capacitor values is described in Section 3.2.

2.4.8 Data Slicer

The data slicer is a fast comparator with a bandwidth of 100 kHz . This allows for a maximum receive data rate of up to 100 kBaud . The maximum achievable data rate also depends on the IF Filter bandwidth and the local oscillator tolerance values. Both inputs are accessible. The output delivers a digital data signal (CMOS-like levels) for subsequent circuits. A self-adjusting slicer-threshold on pin 20 its generated by a RCterm. In ASK-mode alternatively a scaled value of the voltage at the PDO-output (approx. 87\%) can be used as the slicer-threshold as shown in Table 4. The data slicer threshold generation alternatives are described in more detail in Section 3.5.

Table 4 SSEL Pin Operating States

SSEL	MSEL	Selected Slicing Level (SL)
X	Low	external SL on Pin 20 (RC-term, e.g.)
High	High	external SL on Pin 20 (RC-term, e.g.)
Low	High	87% of PDO-output (approx.)

2.4.9 Peak Detector

The peak detector generates a DC voltage which is proportional to the peak value of the receive data signal. A capacitor is necessary. The input is connected to the output of the RSSI-output of the Limiter, the output is connected to the PDO pin (Pin 26). This output can be used as an indicator for the received signal strength to use in wake-up circuits and as a reference for the data slicer in ASK mode. Note that the RSSI level is also output in case of FSK mode.

2.4.10 Bandgap Reference Circuitry

A Bandgap Reference Circuit provides a temperature stable reference voltage for the device. A power down mode is available to switch off all subcircuits which is controlled by the PWDN pin (Pin 27) as shown in the following table. The supply current drawn in this case is typically 50 nA .

Table 5 PDWN Pin Operating States

PDWN	Operating State
Open or tied to ground	Powerdown Mode
Tied to Vs	Receiver On

TDA 5220
technologies
Applications

3 Applications

3.1 Application Circuit

Figure 3 LNA Automatic Gain Control Circuity
The LNA automatic gain control circuitry consists of an operational transimpedance amplifier that is used to compare the received signal strength signal (RSSI) generated by the Limiter with an externally provided threshold voltage $\mathrm{U}_{\text {thres }}$. As shown in the following figure the threshold voltage can have any value between approximately 0.8 and 2.8V to provide a switching point within the receive signal dynamic range.

This voltage $U_{\text {thres }}$ is applied to the THRES pin (Pin 23) The threshold voltage can be generated by attaching a voltage divider between the 3VOUT pin
(Pin 24) which provides a temperature stable 3V output generated from the internal bandgap voltage and the THRES pin. If the RSSI level generated by the Limiter is higher than $U_{\text {thres }}$, the OTA generates a positive current $I_{\text {load }}$. This yields a voltage rise on the TAGC pin (Pin 4). Otherwise, the OTA generates a negative current. These currents do not have the same values in order to achieve a fast-attack and slow-release action of the

TDA 5220
technologies

Applications

AGC and are used to charge an external capacitor which finally generates the LNA gain control voltage.

Figure 4 RSSI Level and Permissive AGC Threshold Levels
The switching point should be chosen according to the intended operating scenario. The determination of the optimum point is described in the accompanying Application Note, a threshold voltage level of 1.8 V is apparently a viable choice. It should be noted that the output of the 3VOUT pin is capable of driving up to $50 \mu \mathrm{~A}$, but that the THRES pin input current is only in the region of 40nA. As the current drawn out of the 3VOUT pin is directly related to the receiver power consumption, the power divider resistors should have high impedance values. The sum of R1 and R2 has to be $600 \mathrm{k} \Omega$ in order to yield 3 V at the 3VOUT pin. R1 can thus be chosen as $240 \mathrm{k} \Omega$, R2 as $360 \mathrm{k} \Omega$ to yield an overall 3VOUT output current of $5 \mu \mathrm{~A}^{1)}$ and a threshold voltage of 1.8 V
Note: If the LNA gain shall be kept in either high or low gain mode this has to be accomplished by tying the THRES pin to a fixed voltage. In order to achieve high gain mode operation, a voltage higher than 2.8 V shall be applied to the THRES pin, such as a short to the 3VOLT pin. In order to achieve low gain mode operation THRES has to be connected to GND.
As stated above the capacitor connected to the TAGC pin is generating the gain control voltage of the LNA due to the charging and discharging currents of the OTA and thus is also responsible for the AGC time constant. As the charging and discharging currents are not equal two different time constants will result. The time constant corresponding to the charging process of the capacitor shall be chosen according to the data rate. According to measurements performed at Infineon the capacitor value should be greater than 47 nF .

[^0]
Applications

3.2 Data Filter Design

Utilising the on-board voltage follower and the two $100 \mathrm{k} \Omega$ on-chip resistors a 2 nd order Sallen-Key low pass data filter can be constructed by adding 2 external capacitors between pins 19 (SLP) and 22 (FFB) and to pin 21 (OPP) as depicted in the following figure and described in the following formulas ${ }^{1)}$.

Figure 5 Data Filter Design
with $R_{\text {F1int }}=R_{\text {F2int }}=R$

$$
C 14=\frac{2 Q \sqrt{b}}{R 2 \pi f_{3 d B}} \quad C 12=\frac{\sqrt{b}}{4 Q R \pi f_{3 d B}}
$$

with

$$
Q=\frac{\sqrt{b}}{a}
$$

Q is the qualify factor of the poles where, in case of a Bessel filter $a=1.3617, b=0.618$ and thus $\mathrm{Q}=0.577$
and in case of a Butter worth filter $\mathrm{a}=1.414, \mathrm{~b}=1$
and thus $\mathrm{Q}=0.71$

Example: Butter worth filter with $f_{3 d B}=5 k H z$ and $R=100 \mathrm{k} \Omega$:
C14=450pF, C12=225pF

[^1]
3.3 Crystal Load Capacitance Calculation

The value of the capacitor necessary to achieve that the crystal oscillator is operating at the intended frequency is determined by the reactive part of the negative resistance of the oscillator circuit as shown in Section 4.1.3 and by the crystal specifications given by the crystal manufacturer.

Figure 6 Determination of Series Capacitance Vale for the Quartz Oscillator
The required series capacitor for a crystal with specified load capacitance C_{L} can be calculated as

$$
C_{S}=\frac{1}{\frac{1}{C_{L}}+2 \pi f X_{L}}
$$

C_{L} is the nominal load capacitance specified by the crystal manufacturer.

Example:
13.4 MHz: $\mathrm{C}_{\mathrm{L}}=12 \mathrm{pF} \quad \mathrm{X}_{\mathrm{L}}=1010 \Omega \quad \mathrm{C}_{\mathrm{S}}=5.9 \mathrm{pF}$

This value may be obtained by putting two capacitors in series to the crystal, such as 22 pF and 8.2 pF for 13.4 MHz .
But please note that the calculated C_{S}-value includes all parasitic.

3.4 Crystal Frequency Calculation

As described in Section 2.4.3 the operating range of the on-chip VCO is wide enough to guarantee a receive frequency range between 810 and 870 MHz or between 400 and 440 MHz . The VCO signal is divided by 2 before applied to the mixer in case of operation at 434 MHz . This local oscillator signal can be used to downconvert the RF signals both

Applications

with high- or low-side injection at the mixer. High-side injection of the local oscillator has to be used for receive frequencies between 810 and 840 MHz or beteween 400 and 420 MHz . In this case the local oscillator frequency is calculated by adding the IF frequency (10.7 MHz) to the RF frequency. Thus the higher frequency of a FSKmodulated signal is demodulated as a logical zero (low).
Low-side injection has to be used for receive frequencies above 840 MHz or above 420 MHz . The local oscillator frequency is calculated by subtracting the IF frequency (10.7 MHz) from the RF frequency then. In this case no sign-inversion occurs and the higher frequency of a FSK-modulated signal is demodulated as a logical one (high). The overall division ratios in the PLL are 32 or 64 depending on whether the FSEL-pin is left open or tied to ground.
Therefore the crystal frequency may be calculated by using the following formula:

$$
f_{Q U}=\frac{f_{R F} \pm 10.7}{r}
$$

with $\quad f_{\mathrm{RF}}$ receive frequency
$f_{\text {Lo }}$ local oscillator (PLL) frequency ($f_{\mathrm{RF}} \pm 10.7$)
f_{QU} quartz crystal oscillator frequency
r ratio of local oscillator (PLL) frequency and crystal frequency as shown in the subsequent table

Table 6 Dependence of PLL Overall Division Ratio on FSEL

FSEL	Ratio $\mathbf{r}=\left(\mathbf{f}_{\mathrm{LO}} / \mathbf{f}_{\mathbf{Q U}}\right)$
open	32
GND	64

This yields the following examples:
FSEL is "Low":

$$
f_{Q U}=\frac{868.4 \mathrm{MHz}-10.7 \mathrm{MHz}}{64}=13.4015625 \mathrm{MHz}
$$

FSEL is „High":

$$
f_{Q U}=\frac{434.2 \mathrm{MHz}-10.7 \mathrm{MHz}}{32}=13.234375 \mathrm{MHz}
$$

Applications

3.5 Data Slicer Threshold Generation

The threshold of the data slicer can be generated using an external R-C integrator as shown in Figure 7.

The time constant T_{A} of this circuit including also the internal resistors $R_{\text {F3int }}$ and $R_{\text {F4int }}$ (see Figure 9) has to be significantly larger than the longest period of no signal change T_{L} within the data sequence.
In order to keep distortion low, the minimum value for R is $20 \mathrm{k} \Omega$.
T_{A} has to be calculated as

$$
T_{A}=\frac{R 1 \cdot\left(R_{F 3 \mathrm{int}}+R_{F 4 \mathrm{int}}\right)}{R 1+R_{F 3 \mathrm{int}}+R_{F 4 \mathrm{int}}} \cdot C 13 \quad=R 1 I I\left(R_{F 3 \mathrm{int}}+R_{F 4 \mathrm{int}}\right) \cdot C 13 \quad \ldots \text { for ASK }
$$

and

$$
T_{A}=\frac{R 1 \cdot R_{F 4 \mathrm{int}}}{R 1+R_{F 3 \mathrm{int}}+R_{F 4 \mathrm{int}}} \cdot C 13 \quad=\frac{R 1 I I\left(R_{F 3 \mathrm{int}}+R_{F 4 \mathrm{int}}\right)}{v} \cdot C 13 \quad \ldots \text { for } F S K
$$

$R 1, R_{F 3 \text { int }}, R_{F 4 \text { int }}$ and $C 13$ see also Figure 7 and .Figure 9

Figure 7 Data Slicer Threshold Generation with External R-C Integrator
In case of ASK operation another possibility for threshold generation is to use the peak detector in connection with an internal resistive divider and one capacitor as shown in the following Figure 8. For selecting the peak detector as reference for the slicing level a logic low as to be applied on the SSEL pin.
In case of MSEL is high (or open), which means that ASK-Mode is selected, a logic low on the SSEL pin yields a logic high on the AND-output and thus the peak-detector is selected (see Figure 9).
In case of FSK the MSEL-pin and furthermore the one input of the AND-gate is low, so the peak detector can not be selected.
The capacitor value is depending on the coding scheme and the protocol used.

TDA 5220
technologies
Applications

Figure 8 Data Slicer Threshold Generation Utilising the Peak Detector

3.6 ASK/FSK-Data Path Functional Description

The TDA5220 is containing an ASK/FSK switch which can be controlled via Pin 15 (MSEL). This switch is actually consisting of 2 operational amplifiers that are having a gain of 1 in case of the ASK amplifier and a gain of 11 in case of the FSK amplifier in order to achieve an appropriate demodulation gain characteristic. In order to compensate for the DC-offset generated especially in case of the FSK PLL demodulator there is a feedback connection between the threshold voltage of the bit slicer comparator (Pin 20) to the negative input of the FSK switch amplifier.

In ASK-mode alternatively to the voltage at Pin 20 (SLN) a value of approx. 87% of the peak-detector output-voltage at Pin 26 (PDO) can be used as the slicer-reference level. The slicing reference level is generated by an internal voltage divider $\left(\mathrm{R}_{\mathrm{T} \text { int, }}, \mathrm{R}_{\mathrm{T} \text { 2int }}\right)$, which is applied on the peak detector output.
The selection between these modes is controlled by Pin 16 (SSEL), as described in Section 3.5.
This is shown in the following Figure 9.

TDA 5220
technologies
Applications

Figure 9 ASK/FSK mode datapath

$3.7 \quad$ FSK Mode

The FSK datapath has a bandpass characterisitc due to the feedback shown above (highpass) and the data filter (lowpass). The lower cutoff frequency f2 is determined by the external RC-combination. The upper cutoff frequency f 3 is determined by the data filter bandwidth.

The demodulation gain of the FSK PLL demodulator is $200 \mu \mathrm{~V} / \mathrm{kHz}$. This gain is increased by the gain v of the FSK switch, which is 11 . Therefore the resulting dynamic gain of this circuit is $2.2 \mathrm{mV} / \mathrm{kHz}$ within the bandpass. The gain for the DC content of FSK signal remains at $200 \mu \mathrm{~V} / \mathrm{kHz}$. The cut-off frequencies of the bandpass have to be chosen such that the spectrum of the data signal is influenced in an acceptable amount.
In case that the user data is containing long sequences of logical zeroes the effect of the drift-off of the bit slicer threshold voltage can be lowered if the offset voltage inherent at the negative input of the slicer comparator (Pin20) is used. The comparator has no hysteresis built in.

This offset voltage is generated by the bias current of the negative input of the comparator (i.e. 20nA) running over the external resistor R. This voltage raises the voltage appearing at pin 20 (e.g. 1 mV with $R=100 \mathrm{k} \Omega$). In order to obtain benefit of this

TDA 5220

Applications
asymmetrical offset for the demodulation of long zeros the lower of the two FSK frequencies should be chosen in the transmitter as the zero-symbol frequency.
In the following figure the shape of the above mentioned bandpass is shown.

Figure 10 Frequency characteristic in case of FSK mode
The cutoff frequencies are calculated with the following formulas:

$$
\begin{gathered}
f_{1}=\frac{1}{2 \pi \frac{R 1 \times 330 k \Omega}{R 1+330 k \Omega} \times C 13} \\
f_{2}=v \times f_{1}=11 \times f_{1}
\end{gathered}
$$

$$
f_{3}=f_{3 d B}
$$

f_{3} is the $3 d B$ cutoff frequency of the data filter - see Section 3.2.

Example:

$\mathrm{R} 1=100 \mathrm{k} \Omega, \mathrm{C} 13=47 \mathrm{nF}$
This leads tof ${ }_{1}=44 \mathrm{~Hz}$ and $\mathrm{f}_{2}=485 \mathrm{~Hz}$

3.8 ASK Mode

In case the receiver is operated in ASK mode the datapath frequency charactersitic is dominated by the data filter alone, thus it is lowpass shaped.The cutoff frequency is determined by the external capacitors C_{12} and C_{14} and the internal 100k resistors as described in Section 3.2

Figure 11 Frequency characteristic in case of ASK mode

3.9 Principle of the Precharge Circuit

In case the data slicer threshold shall be generated with an external RC network as described in Section 3.5 it is necessary to use large values for the capacitor C attached to the SLN pin (pin 20) in order to achieve long time constants. This results also from the fact that the choice of the value for R1 connected between the SLP and SLN pins (pins 19 and 20) is limited by the $330 \mathrm{k} \Omega$ resistor appearing in parallel to R1 as can be seen in Figure 9. Apart from this a resistor value of $100 \mathrm{k} \Omega$ leads to a voltage offset of 1 mv at the comparator input. The resulting startup time constant τ_{1} can be calculated with:

$$
\tau_{1}=(R 1 \| 330 k \Omega) \times C 13
$$

In case R 1 is chosen to be $100 \mathrm{k} \Omega$ and C 13 is chosen as 47 nF this leads to

$$
\tau_{1}=(100 k \Omega \| 330 k \Omega) \times 47 n F=77 \mathrm{k} \Omega \times 47 n F=3.6 \mathrm{~ms}
$$

When the device is turned on this time constant dominates the time necessary for the device to be able to demodulate data properly. In the powerdown mode the capacitor is only discharged by leakage currents.

TDA 5220
technologies
Applications
In order to reduce the turn-on time in the presence of large values of C a precharge circuit was included in the TDA5220 as shown in the following figure.

Figure 12 Principle of the precharge circuit
This circuit charges the capacitor C 13 with an inrush current $\mathrm{I}_{\text {oad }}$ of typically $220 \mu \mathrm{~A}$ for a duration of T_{2} until the voltage U_{c} appearing on the capacitor is equal to the voltage U_{s} at the input of the data filter. This voltage is limited to 2.5 V . As soon as these voltages are equal or the duration T_{2} is exceeded the precharge circuit is disabled.
τ_{2} is the time constant of the charging process of C18 which can be calculated as

$$
\tau_{2} \approx 20 \mathrm{k} \Omega \times C 2
$$

as the sum of R4 and R5 is sufficiently large and thus can be neglected. T_{2} can then be calculated according to the following formula:

$$
T_{2}=\tau_{2} \ln \left(\frac{1}{1-\frac{2.4 V}{3 V}}\right) \approx \tau_{2} \times 1.6
$$

The voltage transient during the charging of C_{2} is shown in the following figure:

Figure 13 Voltage appearing on C18 during precharging process
The voltage appearing on the capacitor C 13 connected to pin 20 is shown in the following figure. It can be seen that due to the fact that it is charged by a constant current source it exhibits is a linear increase in voltage which is limited to $U_{S \max }=2.5 \mathrm{~V}$ which is also the approximate operating point of the data filter input. The time constant appearing in this case can be denoted as T_{3}, which can be calculated with:

$$
T_{3}=\frac{U_{S \max } \times C 13}{220 \mu \mathrm{~A}}=\frac{2.5 \mathrm{~V}}{220 \mu \mathrm{~A}} \times C 13
$$

TDA 5220
technologies
Applications

Figure 14 Voltage transient on capacitor C13 attached to pin 20
As an example the choice of $\mathrm{C} 18=22 \mathrm{nF}$ and $\mathrm{C} 13=47 \mathrm{nF}$ yields
$\tau_{2}=0.44 \mathrm{~ms}$
$\mathrm{T}_{2}=0.71 \mathrm{~ms}$
$\mathrm{T}_{3}=0.53 \mathrm{~ms}$

This means that in this case the inrush current could flow for a duration of 0.64 ms but stops already after 0.49 ms when the $\mathrm{U}_{\text {Smax }}$ limit has been reached. T_{3} should always be chosen to be shorter than T_{2}.
It has to be noted finally that during the turn-on duration T_{2} the overall device power consumption is increased by the $220 \mu \mathrm{~A}$ needed to charge C13.
The precharge circuit may be disabled if C 18 is not equipped. This yields a T_{2} close to zero. Note that the sum of R_{4} and R_{5} has to be $600 \mathrm{k} \Omega$ in order to produce 3 V at the THRES pin as this voltage is internally used also as the reference for the FSK demodulator.

4 Reference

4.1 Electrical Data

4.1.1 Absolute Maximum Ratings

Attention: The maximum ratings may not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the IC may result. The AC/DC characteristic limits are not guaranteed.

Table 7 Absolute Maximum Ratings, $T_{\text {amb }}=-40^{\circ} \mathrm{C} \ldots+105^{\circ} \mathrm{C}$

$\#$	Parameter	Symbol	Limit Values		Unit	Remarks
			min.	max.		
1	Supply Voltage	V_{s}	-0.3	5.5	V	
2	Junction Temperature	T_{j}	-40	+125	${ }^{\circ} \mathrm{C}$	
3	Storage Temperature	T_{s}	-40	+150	${ }^{\circ} \mathrm{C}$	
4	Thermal Resistance	$\mathrm{R}_{\mathrm{thJA}}$		114	$\mathrm{~K} / \mathrm{W}$	
5	ESD integrity, all pins excl. Pins 1,3, 6, 28 ESD integrity Pins $1,3,6,28$	$\mathrm{~V}_{\text {ESD }}$		+2	kV	HBM according to MIL STD 883D
method 3015.7						

4.1.2 Operating Range

Within the operational range the IC operates as explained in the circuit description. Currents flowing into the device are denoted as positive currents and vice versa. The device parameters with \square are not part of the production test, but either verified by design or measured in the Infineon Evalboard as described in Section 4.2.
Supply voltage: VCC $=4.5 \mathrm{~V}$.. 5.5 V

Table 8 Operating Range, $T_{\text {amb }}=-40^{\circ} \mathrm{C} \ldots+105^{\circ} \mathrm{C}$

\#	Parameter	Symbol	Limit Values		Unit	Test Conditions/ Notes	
			min.	max.			
1	Supply Current	$\begin{array}{\|l} \hline I_{\mathrm{SF}} 868 \\ \mathrm{I}_{\mathrm{SF}} 434 \\ \mathrm{I}_{\mathrm{SA}} 868 \\ \mathrm{I}_{\mathrm{SA}} 434 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.9 \\ & 3.7 \\ & 3.2 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 7.9 \\ & 7.7 \\ & 7.2 \\ & 7.0 \end{aligned}$	mA mA mA mA	$\mathrm{f}_{\mathrm{RF}}=868 \mathrm{MHz}$, FSK Mode $\mathrm{f}_{\mathrm{RF}}=434 \mathrm{MHz}$, FSK Mode $\mathrm{f}_{\mathrm{RF}}=868 \mathrm{MHz}$, ASK Mode $\mathrm{f}_{\mathrm{RF}}=434 \mathrm{MHz}$, ASK Mode	
2	Receiver Input Level ASK FSK, frequ. dev. $\pm 50 \mathrm{kHz}$	$R F_{\text {in }}$	$\begin{aligned} & -106 \\ & -100 \end{aligned}$	$\begin{array}{\|l\|} \hline-13 \\ -13 \end{array}$	dBm dBm	@source impedance 50Ω BER 2E-3, average power level, Manchester encoded datarate 4kBit, 280KHz IF Bandwidth	\square
3	LNI Input Frequency	f_{RF}	400/810	440/870	MHz		
4	MI/X Input Frequency	$\mathrm{f}_{\text {MI }}$	400/810	440/870	MHz		
5	3dB IF Frequency Range ASK FSK	$\mathrm{f}_{\mathrm{FF}-3 \mathrm{~dB}}$	$\begin{array}{\|l} 5 \\ 10.4 \end{array}$	$\begin{aligned} & 23 \\ & 11 \end{aligned}$	MHz		\square
6	Powerdown Mode On	$\mathrm{PWDN}_{\text {ON }}$	2	$\mathrm{V}_{\text {S }}$	V		
7	Powerdown Mode Off	PWDN ${ }_{\text {OFF }}$	0	0.8	V		
8	Gain Control Voltage, LNA high gain state	$V_{\text {THRES }}$	2.8	V_{S}	V		
9	Gain Control Voltage, LNA low gain state	$\mathrm{V}_{\text {THRES }}$	0	0.7	V		

Not part of the production test - either verified by design or measured in the Infineon Evalboard as described in Section 4.2.

4.1.3 \quad AC/DC Characteristics at $T_{\mathrm{AMB}}=25^{\circ} \mathrm{C}$

AC/DC characteristics involve the spread of values guaranteed within the specified voltage and ambient temperature range. Typical characteristics are the median of the production. Currents flowing into the device are denoted as po-sitive currents and vice versa. The device performance parameters marked with $\boldsymbol{\square}$ are not part of the production test - either verified by design or measured in the Infineon Evalboard as described in Section 4.2.

Table $9 \quad$ AC/DC Characteristics with $\mathrm{T}_{\mathrm{A}} 25^{\circ} \mathrm{C}, \mathrm{V}_{\text {vCC }}=4.5 \ldots 5.5 \mathrm{~V}$

\#	Parameter	Symbol	Limit Values			Unit	Test Conditions/ Notes	L	
			min.	typ.	max.				

SUPPLY

Supply Current

1	Supply current, standby mode	$\mathrm{I}_{\text {SPDWN }}$		50	100	nA	Pin 27 (PDWN) open or tied to 0 V
2	Supply current, device operating in 868 MHz range, FSK mode	$\mathrm{I}_{\text {SF } 868}$	5.1	5.9	6.7	mA	Pin 11 (FSEL) tied to GND, Pin 15 (MSEL) tied to GND
3	Supply current, device operating in 434 MHz range, FSK mode	$\mathrm{I}_{\text {SA } 434}$	4.9	5.7	6.5	mA	Pin 11 (FSEL) open, Pin 15 (MSEL) tied to GND
4	Supply current, device operating in 868 MHz range, ASK mode	$\mathrm{I}_{\text {SA } 868}$	4.4	5.2	6	mA	Pin 11 (FSEL) tied to GND, Pin 15 (MSEL) open
5	Supply current, device operating in 434 MHz range, ASK mode	$\mathrm{I}_{\text {SA } 434}$	4.2	5.	5.8	mA	Pin 11 (FSEL) open, Pin 15 (MSEL) open
LNA							

Signal Input LNI (PIN 3), $\mathrm{V}_{\text {THRES }}>2.8 \mathrm{~V}$, high gain mode

Reference

\#	Parameter	Symbol	Limit Values			Unit	Test Conditions/ Notes	L
			min.	typ.	max.			
6	Input $3^{\text {rd }}$ order intercept point $f_{\text {RF }}=434 \mathrm{MHz}$	IIP3 ${ }_{\text {LNA }}$		-10		dBm	matched input	\square
7	Input $3^{\text {rd }}$ order intercept point $\mathrm{f}_{\mathrm{RF}}=869 \mathrm{MHz}$	$\mathrm{IIP}^{\text {LNA }}$		-14		dBm	matched input	\square
8	LO signal feedthrough at antenna port	$\mathrm{LO}_{\mathrm{LNI}}$			-73	dBm		\square

Signal Output LNO (PIN 6), $\mathrm{V}_{\text {THRES }}>\mathbf{2 . 8 V}$, high gain mode

Signal Input LNI, $\mathrm{V}_{\text {THRES }}=G N D$, Iwo gain mode

1	Input impedance, $\mathrm{f}_{\mathrm{RF}}=434 \mathrm{MHz}$	$\mathrm{S}_{11 \text { LNA }}$	0.873 / -34.7			\square
2	Input impedance, $\mathrm{f}_{\mathrm{RF}}=869 \mathrm{MHz}$	S_{11} LNA	0.738 / -73.5			\square
3	Input level@1dB C. P. $\mathrm{f}_{\mathrm{RF}}=434 \mathrm{MHz}$	P1dB ${ }_{\text {LNA }}$	-18	dBm	matched input	■
4	Input level @ 1dB C. P. $\mathrm{f}_{\mathrm{RF}}=869 \mathrm{MHz}$	P1dB ${ }_{\text {LNA }}$	-6	dBm	matched input	\square
5	Input $3^{\text {rd }}$ order intercept point $f_{\text {RF }}=434 \mathrm{MHz}$	IIP3 ${ }_{\text {LNA }}$	-10	dBm	matched input	■
6	Input 3 rd order intercept point $f_{\text {RF }}=869 \mathrm{MHz}$	$\mathrm{IIP3}_{\text {LNA }}$	-5	dBm	matched input	■

Signal Output LNO, $\mathrm{V}_{\text {THRES }}=G N D$, Iwo gain mode

1	Gain $\mathrm{f}_{\mathrm{RF}}=434 \mathrm{MHz}$	$\mathrm{S}_{21 \mathrm{LNA}}$	$0.183 / 140.6 \mathrm{deg}$			$\boldsymbol{\square}$
2	Gain $\mathrm{f}_{\mathrm{RF}}=869 \mathrm{MHz}$	S_{21} LNA	$0.179 / 109.1 \mathrm{deg}$			$\boldsymbol{\square}$
3	Output impedance, $\mathrm{f}_{\mathrm{RF}}=434 \mathrm{MHz}$	S_{22} LNA	$0.897 /-13.6 \mathrm{deg}$			$\boldsymbol{\square}$

Reference

\#	Parameter	Symbol	Limit Values			Unit	Test Conditions/ Notes	L
			min.	typ.	max.			
4	Output impedance, $\mathrm{f}_{\mathrm{RF}}=869 \mathrm{MHz}$	$\mathrm{S}_{22 \mathrm{LNA}}$	0.868 / -26.3 deg					\square
5	Voltage Gain Antenna to $\mathrm{MI} \mathrm{f}_{\mathrm{RF}}=434 \mathrm{MHz}$	$\mathrm{G}_{\text {AntMl }}$		22		dB		
6	Voltage Gain Antenna to $\mathrm{Ml} \mathrm{f}_{\mathrm{RF}}=869 \mathrm{MHz}$	$\mathrm{G}_{\text {AntMI }}$		19		dB		

Signal 3VOUT (PIN 24)

1	Output voltage	$\mathrm{V}_{\text {3Vout }}$	2.9	3.1	3.3	V	3VOUT Pin open	
2	Current out	$\mathrm{I}_{\text {3Vout }}$	-3	-5	-10	$\mu \mathrm{~A}$	see Section 4.1	

Signal THRES (PIN 23)

1	Input Voltage range	$\mathrm{V}_{\text {THRES }}$	0		$\mathrm{~V}_{\mathrm{S}^{-1}}$	V	see Section 4.1	
2	LNA low gain mode	$\mathrm{V}_{\text {THRES }}$			0	V		
3	LNA high gain mode	$\mathrm{V}_{\text {THRES }}$	3		$\mathrm{~V}_{\mathrm{S}^{-1}}$	V	or shorted to Pin 24	
4	Current in	$\mathrm{I}_{\text {THRES_in }}$		5		nA		$\boldsymbol{\square}$

Signal TAGC (PIN 4)

| 1 | Current out,
 LNA low gain state | $\mathrm{I}_{\text {TAGC_out }}$ | -3.6 | -4.2 | -5.5 | $\mu \mathrm{~A}$ | $\mathrm{RSSI}>\mathrm{V}_{\text {THRES }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | Current in,
 LNA high gain state | $\mathrm{I}_{\text {TAGC_in }}$ | 1 | 1.6 | 2.2 | $\mu \mathrm{~A}$ | $\mathrm{RSSI}<\mathrm{V}_{\text {THRES }}$ |

MIXER

Signal Input MI/MIX (PINS 8/9)

1	Input impedance, $\mathrm{f}_{\mathrm{RF}}=434 \mathrm{MHz}$	$\mathrm{S}_{11 \mathrm{MIX}}$	0.942 / -14.4			\square
2	Input impedance, $\mathrm{f}_{\mathrm{RF}}=869 \mathrm{MHz}$	$\mathrm{S}_{11 \mathrm{MIX}}$	0.918 / -28.1			\square
3	Input $3^{\text {rd }}$ order intercept point $\mathrm{f}_{\mathrm{RF}}=434 \mathrm{MHz}$	$\mathrm{IIP}^{\text {MIX }}$	-28	dBm		\square
4	Input $3^{\text {rd }}$ order intercept point $f_{\text {RF }}=869 \mathrm{MHz}$	$\mathrm{IIP}^{\text {MIX }}$	-26	dBm		\square

Signal Output IFO (PIN 12)

1	Output impedance	$\mathrm{Z}_{\text {IFO }}$		330		Ω		■
2	Conversion Voltage Gain $\mathrm{f}_{\mathrm{RF}}=434 \mathrm{MHz}$	$\mathrm{G}_{\mathrm{MIX}}$		19		dB		

TDA 5220
technologies
Reference

\#	Parameter	Symbol	Limit Values			Unit	Test Conditions/ Notes	\mathbf{L}
			min.	typ.	max.			
3	Conversion Voltage Gain $f_{R F}=869 ~ M H Z ~$	$\mathrm{G}_{\text {MIX }}$		18		dB		

LIMITER

Signal Input LIM/X (PINS 17/18)

1	Input Impedance	$\mathrm{Z}_{\mathrm{LIM}}$	264	330	396	Ω		$\boldsymbol{\square}$
2	RSSI dynamic range	$\mathrm{DR}_{\mathrm{RSSI}}$		70		dB		
3	RSSI linearity	$\mathrm{LIN}_{\mathrm{RSSI}}$		± 1		dB		$\boldsymbol{\square}$
4	Operating frequency (3dB points)	$\mathrm{f}_{\mathrm{LIM}}$	5	10.7	23	MHz		$\boldsymbol{\square}$

DATA FILTER

1	Useable bandwidth	BW $_{\text {BB }}$ FILT			100	kHz	
2	RSSI Level at Data Filter Output SLP, RF $_{\text {IN }}=-103 \mathrm{dBm}$	RSSI $_{\text {low }}$		1.1		V	LNA in high gain mode at 868 MHz
3	RSSI Level at Data Filter Output SLP, $^{R F_{\text {IN }}=-30 d B m}$	RSSI $_{\text {high }}$		2.65		V	LNA in high gain mode at 868 MHz

Signal Output DATA (PIN 25)

1	Maximum Datarate	DR $_{\max }$			100	kBps	$\mathrm{NRZ}, 20 \mathrm{pF}$ capacitive loading	■
2	LOW output voltage	$\mathrm{V}_{\text {SLIC_L }}$	0		0.1	V		
3	HIGH output voltage	$\mathrm{V}_{\text {SLIC_H }}$	$\mathrm{V}_{\mathrm{S}^{-}}$ 1.3	$\mathrm{~V}_{\mathrm{S}^{-1}}$	$\mathrm{V}_{\mathrm{S}^{-}}$ 0.7	V	output current=200	A

Slicer, Negative Input (PIN 20)

1	Precharge Current Out	$\mathrm{I}_{\mathrm{PCH}}$ SLN	-100	-220	-300	$\mu \mathrm{~A}$	see Section 4.2.

Reference

PEAK DETECTOR

Signal Output PDO (PIN 26)

1	Load current	Iload	-500			$\mu \mathrm{~A}$	static load current must not exceed $-500 \mu \mathrm{~A}$	
2	Internal resistive load	R	357	446	535	$\mathrm{k} \Omega$		

CRYSTAL OSCILLATOR

Signals CRSTL 1, CRSTL 2 (PINS 1/28)

1	Operating frequency	$\mathrm{f}_{\mathrm{CRSTL}}$	6		14	MHz	fundamental mode, series resonance	
2	Input Impedance $@ \sim 13 \mathrm{MHz}$	Z_{1-28}		$-600+$ j 1010		Ω		$\boxed{\square}$
3	Serial Capacity $@ \sim 13 \mathrm{MHz}$	$\mathrm{C}_{\mathrm{S} 10}=\mathrm{C} 1$			5.9	pF		\square

ASK/FSK Signal Switch

Signal MSEL (PIN 15)

1	ASK Mode	$\mathrm{V}_{\text {MSEL }}$	1.4		4	V	or open	
2	FSK Mode	$\mathrm{V}_{\text {MSEL }}$	0		0.2	V		
3	Input Bias Current MSEL	$\mathrm{I}_{\text {MSEL }}$		-11	19	$\mu \mathrm{~A}$	MSEL tied to GND	

FSK DEMODULATOR

1	Demodulation Gain	G $_{\text {FMDEM }}$		200		$\mu \mathrm{V} /$ kHz	
2	Useable IF Bandwidth	BW $_{\text {IFPLL }}$	10.2	10.7	11.2	MHz	

POWER DOWN MODE

Signal PDWN (PIN 27)

1	Powerdown Mode On	PWDN $_{\text {ON }}$	2.8		$\mathrm{~V}_{\mathrm{S}}$	V		
2	Powerdown Mode Off	PWDN $_{\text {Off }}$	0		0.8	V		

TDA 5220
technologies
Reference

$\#$	Parameter	Symbol	Limit Values			Unit	Test Conditions/	
	min.	typ.	max.					

Signal FSEL (PIN 11)

1	f_{RF} range 434 MHz	$\mathrm{V}_{\mathrm{FSEL}}$	1.4		4	V	or open	
2	f_{RF} range 869 MHz	$\mathrm{V}_{\mathrm{FSEL}}$	0		0.2	V		
3	Input bias current FSEL	$\mathrm{I}_{\text {FSEL }}$	-160	-200	-240	$\mu \mathrm{~A}$	FSEL tied to GND	

Signal SSEL (PIN 16), ASK-Mode

1	Slicer-Reference is voltage at Pin 20 (SLN)	$V_{\text {SSEL }}$	1.4		4	V	or open	
2	Slicer-Reference is approx. 87\% of the voltage at Pin 26 (PDO)	$V_{\text {SSEL }}$	0		0.2	V		
3	Input bias current SSEL	ISSEL		-10	-19	$\mu \mathrm{~A}$	SSEL tied to GND	

■ Not part of the production test - either verified by design or measured in the Infineon Evalboard as described in Section 4.2.

4.1.4 AC/DC Characteristics at $\mathrm{T}_{\mathrm{AMB}}=-40$ to $105^{\circ} \mathrm{C}$

Currents flowing into the device are denoted as positive currents and vice versa.

Table 10 AC/DC Characteristics with $\mathrm{T}_{\mathrm{AMB}}=-40^{\circ} \mathrm{C} \ldots+105^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{VCC}}=4.5 \ldots 5.5 \mathrm{~V}$

\#	Parameter	Symbol	Limit Values		Unit	Test Conditions/ Notes	■
			min.	typ.	max.		

Supply Current								
1	Supply current, standby mode	$\mathrm{I}_{\text {SPDWN }}$		50	400	nA	Pin 27 (PDWN) open or tied to 0 V	
2	Supply current, device operating in 868 MHz range, FSK mode	$\mathrm{I}_{\text {SF } 868}$	3.9	5.9	7.9	mA	Pin 11 (FSEL) tied to GND, Pin 15 (MSEL) tied to GND	
3	Supply current, device operating in 434 MHz range, FSK mode	$\mathrm{I}_{\text {SA } 434}$	3.7	5.7	7.7	mA	Pin 11 (FSEL) open, Pin 15 (MSEL) tied to GND	
4	Supply current, device operating in 868 MHz range, ASK mode	$\mathrm{I}_{\text {SA } 868}$	3.2	5.2	7.2	mA	Pin 11 (FSEL) tied to GND, Pin 15 (MSEL) open	
5	Supply current, device operating in 434 MHz range, ASK mode	$\mathrm{I}_{\text {SA 434 }}$	3	5.	7	mA	Pin 11 (FSEL) open, Pin 15 (MSEL) open	

Signal Input 3VOUT (PIN 24)

1	Output voltage	$\mathrm{V}_{\text {3VOUT }}$	2.9	3.1	3.3	V	3VOUT Pin open	
2	Current out	$\mathrm{I}_{\text {3VOUT }}$	-3	-5	-10	$\mu \mathrm{~A}$	see Section 4.1	

Signal THRES (PIN 23)

1	Input Voltage range	$\mathrm{V}_{\text {THRES }}$	0		$\mathrm{~V}_{\mathrm{S}^{-1}}$	V	see Section 4.1	
2	LNA low gain mode	$\mathrm{V}_{\text {THRES }}$			0	V		
3	LNA high gain mode	$\mathrm{V}_{\text {THRES }}$	3		$\mathrm{~V}_{\mathrm{S}^{-1}}$	V	or shorted to Pin 24	
4	Current in	$\mathrm{I}_{\text {THRES_in }}$		5		nA		\square

Signal TAGC (PIN 4)

1	Current out, LNA low gain state	$\mathrm{I}_{\text {TAGC_out }}$	-1	-4.2	-8	$\mu \mathrm{~A}$	RSSI $>\mathrm{V}_{\text {THRES }}$	

TDA 5220
technologies
Reference

\#	Parameter	Symbol	Limit Values			Unit	Test Conditions/ Notes	\square
			min.	typ.	max.			
2	Current in, LNA high gain state	$\mathrm{V}_{\text {TAGC_in }}$	0.5	1.5	5	$\mu \mathrm{A}$	$\mathrm{RSSI}<\mathrm{V}_{\text {THRES }}$	

MIXER

1	Conversion Voltage Gain $\mathrm{f}_{\mathrm{RF}}=434 \mathrm{MHz}$	$\mathrm{G}_{\mathrm{MIX}}$		+19		dB	
2	Conversion Voltage Gain $\mathrm{f}_{\mathrm{RF}}=868 \mathrm{MHz}$	$\mathrm{G}_{\mathrm{MIX}}$		+18		dB	

LIMITER

Signal Input LIM/X (PINS 17/18)

1	RSSI dynamic range DR $_{\text {RSSI }}$		70		dB			
2	RSSI Level at Data Filter Output SLP, $R F_{\text {IN }}=-103 \mathrm{dBm}$	RSSI $_{\text {low }}$		1.1		V	LNA in high gain mode at 868 MHz	
3	RSSI Level at Data Filter Output SLP, $R F_{\text {IN }}=-30 \mathrm{dBm}$	RSSI $_{\text {high }}$		2.65		V	LNA in high gain mode at 868 MHz	

Slicer, Signal Output DATA (PIN 25)

1	Maximum Datarate	DR $_{\max }$			100	kBps	NRZ, 20pF capacitive loading	■
2	LOW output voltage	$\mathrm{V}_{\text {SLIC_L }}$	0		0.1	V		
3	HIGH output voltage	$\mathrm{V}_{\text {SLIC_H }}$	$\mathrm{V}_{\mathrm{S}^{-}}$ 1.5	$\mathrm{~V}_{\mathrm{S}^{-1}}$	$\mathrm{V}_{\mathrm{S}^{-}}$ 0.5	V	output current=200	

Slicer, Negative Input (PIN 20)

1	Precharge Current Out	IPCH_SLN	-100	-220	-300	$\mu \mathrm{~A}$	see Section 4.2	

TDA 5220
technologie
Reference

\#	Parameter	Symbol	Limit Values		Unit	Test Conditions/ Notes	$\boxed{\square}$

Signal Output PDO (PIN 26)

1	Load current	I load	-400			$\mu \mathrm{~A}$	static load current must not exceed $-500 \mu \mathrm{~A}$		
2	Internal resistive load	R	356	446	575	$\mathrm{k} \Omega$			CRYSTAL OSCILLATOR
:---									

Signals CRSTL 1, CRSTL 2 (PINS 1/28)

1	Operating frequency	$\mathrm{f}_{\mathrm{CRSTL}}$	6		14	MHz	fundamental mode, series resonance	

ASK/FSK Signal Switch

Signal MSEL (PIN 15)

1	ASK Mode	$\mathrm{V}_{\text {MSEL }}$	1.4		4	V	or open	
2	FSK Mode	$\mathrm{V}_{\text {MSEL }}$	0		0.2	V		
3	Input bias current MSEL	$\mathrm{I}_{\text {MSEL }}$		-11	-20	$\mu \mathrm{~A}$	MSEL tied to GND	

FSK DEMODULATOR

1	Demodulation Gain	$\mathrm{G}_{\text {FMDEM }}$		200		$\mu \mathrm{V} /$ kHz		
2	Useable IF Bandwidth	BW $_{\text {IFPLL }}$	10.2	10.7	11.2	MHz		

POWER DOWN MODE

Signal PDWN (PIN 27)

1	Powerdown Mode On	PWDN $_{\text {ON }}$	2.8		V_{S}	V	
2	Powerdown Mode Off	PWDN $_{\text {Off }}$	0		0.8	V	

TDA 5220
technologies
Reference

$\#$	Parameter	Symbol	Limit Values			Unit	Test Conditions/ Notes		
		min.	typ.	max.					
3	Start-up Time until valid signal is detected at IF	$T_{\text {SU }}$		<1		ms	depends on the used crystal		VCO MULTIPLEXER
:---									

Signal FSEL (PIN 11)

1	f_{RF} range 434 MHz	$\mathrm{V}_{\mathrm{FSEL}}$	1.4		4	V	or open	
2	f_{RF} range 869 MHz	$\mathrm{V}_{\mathrm{FSEL}}$	0		0.2	V		
3	Input bias current FSEL	$\mathrm{I}_{\text {FSEL }}$	-110	-200	-340	$\mu \mathrm{~A}$	FSEL tied to GND	

Signal SSEL (PIN 16), ASK-Mode

1	Slicer-Reference is voltage at Pin 20 (SLN)	$V_{\text {SSEL }}$	1.4		4	V	or open	
2	Slicer-Reference is approx. 87% of the voltage at Pin 26 (PDO)	$V_{\text {SSEL }}$	0		0.2	V		
3	Input bias current SSEL	ISSEL		-11	-20	$\mu \mathrm{~A}$	SSEL tied to GND	

- Not part of the production test - either verified by design or measured in the Infineon Evalboard as described in Section 4.2.

4.2 Test Circuit

The device performance parameters marked with \square in Section 4.1 were either verified by design or measured on an Infineon evaluation board. This evaluation board can be obtained together with evaluation boards of the accompanying transmitter device TDK5110 in an evaluation kit that may be ordered on the INFINEON Webpage www.infineon.com/Products. More information on the kit is available on request.

TDA 5220

Reference

Figure 15 Schematic of the Evaluation Board

4.3 Test Board Layouts

Figure 16 Top Side of the Evaluation Board

TDA 5220

Reference

Figure 17 Bottom Side of the Evaluation Board

Figure 18 Component Placement on the Evaluation Board

4.4 Bill of Materials

The following components are necessary for evaluation of the TDA5220.
Table $11 \quad$ Bill of Materials (cont'd)

Ref.	Value 434MHz	Value 868 MHz	Specification
C1	1 pF	1 pF	0805, COG, +/-0.1pF
C2	4.7pF	3.9pF	0805, COG, +/-0.1pF
C3	6.8pF	5.6pF	0805, COG, +/-0.1pF
C4	100pF	100pF	0805, COG, +/-5\%
C5	47nF	47nF	1206, X7R, +/-10\%
C6	10nH	3.9pF	Toko, PTL2012-F10N0G
C7	100pF	100pF	0805, COG, +/-5\%
C8	33pF	22pF	0805, COG, +/-5\%
C9	100pF	100pF	0805, COG, +/-5\%
C10	10nF	10nF	0805, X7R, +/-10\%
C11	10nF	10nF	0805, X7R, +/-10\%
C12	220pF	220pF	0805, COG, +/-5\%
C13	47 nF	47nF	0805, X7R, +/-10\%
C14	470pF	470pF	0805, COG, +/-5\%
C15	47nF	47nF	0805, COG, +/-5\%
C16	8.2pF	8.2pF	0805, COG, +/-0.1pF
C17	18pF	18pF	0805, COG, +/-1\%
C18	22nF	22nF	0805, X7R, +/-5\%
C21	100nF	100nF	1206, X7R, +/-10\%
IC1	TDA5220	TDA5220	Infineon
L1	15nH	3.3 nH	Toko, PTL2012-F15N0G
L2	8.2pF	3.9pF	0805, COG, +/-0.1pF
Q1	13.234375 MHz	13.4015625 MHz	1053-922
Q2	SFE_10.7MA5-A	SFE_10.7MA5-A	Murata
R1	$100 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	0805, +/-5\%
R4	$240 \mathrm{k} \Omega$	$240 \mathrm{k} \Omega$	0805, +/-5\%
R5	$360 \mathrm{k} \Omega$	$360 \mathrm{k} \Omega$	0805, +/-5\%

Reference

Ref.	Value 434MHz	Value 868MHz	Specification
R6	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$0805,+/-5 \%$
S1	STL_2POL	STL_2POL	2-pole pin connector
S2	SOL_JUMP	SOL_JUMP	SOL_JUMP
S3	SOL_JUMP	SOL_JUMP	SOL_JUMP
S6	SOL_JUMP	SOL_JUMP	SOL_JUMP
X1	STL_2POL	STL_2POL	2-pole pin connector
X2	A107-900A (1.6mm gold plated)	A107-900A (1.6mm gold plated)	INPUT OUTPUT ENTERPRISE CORP
X3	A107-900A (1.6mm gold plated)	A107-900A (1.6mm gold plated)	INPUT OUTPUT ENTERPRISE CORP

Please note that in case of operation at 434 MHz a capacitor has to be soldered in place L2 and an inductor in place C6.

Package Outlines

$5 \quad$ Package Outlines

Figure 19 <Dev_Package1>

Table 12 Order Information

Type	Ordering Code	Package
TDA 5220	Q67100-H2049	<Dev_Package1>

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.
List of Tables Page
Table 1 Pin Defintion and Function 8
Table 2 FSEL-Pin Operating States 16
Table 3 MSEL Pin Operating States 17
Table 4 SSEL Pin Operating States 18
Table 5 PDWN Pin Operating States 18
Table 6 Dependence of PLL Overall Division Ratio on FSEL. 23
Table $7 \quad$ Absolute Maximum Ratings, $T_{\text {amb }}=-40^{\circ} \mathrm{C} \ldots+105^{\circ} \mathrm{C}$. 32
Table 8 Operating Range, $T_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \ldots+105^{\circ} \mathrm{C}$ 33
Table $9 \quad$ AC/DC Characteristics with $\mathrm{T}_{\mathrm{A}} 25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{VCC}}=8.5 \mathrm{~V} /$. 34
Table $10 \quad \mathrm{AC} / \mathrm{DC}$ Characteristics with $\mathrm{T}_{\mathrm{AMB}}=-40^{\circ} \mathrm{C} \ldots+105^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{VCC}}=5.5 \mathrm{~V}$ 40
Table 11 Bill of Materials. 46
Table 12 Order Information. 48
List of Figures Page
Figure 1 Pin Configuration 7
Figure $2 \quad$ Block Diagram 15
Figure 3 LNA Automatic Gain Control Circuity 19
Figure 4 RSSI Level and Permissive AGC Threshold Levels 20
Figure 5 Data Filter Design 21
Figure 6 Determination of Series Capacitance Vale for the Quartz Oscillator 22
Figure 7 Data Slicer Threshold Generation with External R-C Integrator 24
Figure 8 Data Slicer Threshold Generation Utilising the Peak Detector 25
Figure 9 ASK/FSK mode datapath 26
Figure 10 Frequency characteristic in case of FSK mode 27
Figure 11 Frequency characteristic in case of ASK mode 28
Figure 12 Principle of the precharge circuit 29
Figure 13 Voltage appearing on C18 during precharging process 30
Figure 14 Voltage transient on capacitor C13 attached to pin 20 31
Figure 15 Schematic of the Evaluation Board 44
Figure 16 Top Side of the Evaluation Board 44
Figure 17 Bottom Side of the Evaluation Board 45
Figure 18 Component Placement on the Evaluation Board 45
Figure 19 P-TSSOP-28-1 48
ww w.infineon.com

[^0]: 1) note the $20 \mathrm{k} \Omega$ resistor in series with the 3.1 V internal voltage source
[^1]: 1) taken from Tietze/Schenk: Halbleiterschaltungstechnik, Springer Berlin, 1999
